

a) Net force on Man = ?

b) If $\mu = 0.2$, upto what accelerastatic tion of belt, can man continue to be stationary.

a)
$$f_{Man} = ma_{a} = 65 \times 1 = 65 N$$

b) frictional force = $\mu R = \mu (mg)$
= 0.2 × 65×10
= 130N

a)
$$t < 0$$

b) $0 < t < 4s$
c) $t > 4s$.
(i) find Impoise $at t = 0s$ & $t = 4s$.
Solution (j)
a) $t < 0$, $x = 0 \Rightarrow v = 0 \Rightarrow a = 0$
 $= > f = 0$
b) $0 < t < 4s$
 $v = \frac{y_2 - y_1}{x_2 - x_1} = \frac{3 - 0}{4 - 0} = \frac{3}{4} ms^{-1}$
 $0.75ms^{-1}$
 $= > a = 0$
 $\Rightarrow f = 0$
c) $t > 4sec$,
 $x = 3m$
 $\frac{dx}{dt} = v = 0$ $v = 0 \Rightarrow a = 0$
 $f = 0$
(i) Impoise $at t = 0sec$.
 $I = change in momentum$
 $= m(v - u)$

Losec à Just enze de velocity

Q. A disc revolves with speed of 331/3 rev/min & has a radius of 15cm.

Two coins are blaced 4cm & 14cm away from centre of record (disc) If coeff of friction b/w coins & record 15 0.15, which of two coins will revolve with record (disc).

=> | νg > ω² ε | (∵ v=ωr) If this condition is satisfied then coin rotate along with disc. (njll $v = \frac{100 \text{ sev}/\text{min}}{3} = \frac{100 \text{ sev}/\text{s}}{180}$ coin1: v = 4cm $\omega^{2} \gamma = (2\pi \nu)^{2} \gamma = 4\pi^{2} \nu^{2} \gamma$ $= 4 \times 3.14 \times 3.14 \times \frac{100}{180} \times \frac{100}{180} \times 4 \times 10^{2}$ $= .49 \, ms^{-2}$ $hg = 0.15 \times 10 = 1.5 \, \text{ms}^{-2}$ =) $\mu g > \omega^2 \chi$ => com @ will rotate along with disc. $\cos(n^2)$ $\omega^2 \gamma = 4\pi^2 v^2 \gamma$ = 4x3-14x3-14x 100x100 x 14x102 $= 1.705 \, m s^{-2}$ $\mu g = 0.15 \times 10 = 1.5 \text{ m s}^2.$ =) $\omega^2 \delta > \nu q$ =) coin(2) will not rotate along with disc.

Q. Motorcycle curved track radius = 500m given, coeff of friction = 0.5. g = 10

20 hat should be maximum speed to avoid skilding.

Q.

The pulleys & strings Shown in figure are Smooth and of negligiable mass. for system to remain in equilibrium, angle Θ is _____ $2Tcos \Theta = \sqrt{2}mg$ $2 mg cos \Theta = \sqrt{2}mg$ $cos \Theta = \sqrt{2}mg$